A set-theoretic approach to database searching and clustering

نویسندگان

  • Antje Krause
  • Martin Vingron
چکیده

MOTIVATION In this paper, we introduce an iterative method of database searching and apply it to design a database clustering algorithm applicable to an entire protein database. The clustering procedure relies on the quality of the database searching routine and further improves its results based on a set-theoretic analysis of a highly redundant yet efficient to generate cluster system. RESULTS Overall, we achieve unambiguous assignment of 80% of SWISS-PROT sequences to non-overlapping sequence clusters in an entirely automatic fashion. Our results are compared to an expert-generated clustering for validation. The database searching method is fast and the clustering technique does not require time-consuming all-against-all comparison. This allows for fast clustering of large amounts of sequences. AVAILABILITY The resulting clustering for the PIR1 (Release 51) and SWISS-PROT (Release 34) databases is available over the Internet from http://www.dkfz-heidelberg.de/tbi/services/modest/b rowsesysters.pl. CONTACT [email protected]; [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Database Searching and Clustering.

An iterative database searching method is introduced and applied to the design of a database clustering procedure. The search method virtually never produces false positive hits while determining meaningfully large sets of sequences related to the query. A novel set-theoretic database clustering algorithm exploits this feature and avoids a traditional, distance-based clustering step. This makes...

متن کامل

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

Data Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach

Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...

متن کامل

A Clustering Approach by SSPCO Optimization Algorithm Based on Chaotic Initial Population

Assigning a set of objects to groups such that objects in one group or cluster are more similar to each other than the other clusters’ objects is the main task of clustering analysis. SSPCO optimization algorithm is anew optimization algorithm that is inspired by the behavior of a type of bird called see-see partridge. One of the things that smart algorithms are applied to solve is the problem ...

متن کامل

روش جدید تقطیع تصویر بر مبنای خوشه‌بندی فازی مبتنی بر تکامل تفاضلی چندهدفه

Image segmentation is one of the most important and difficult steps in machine vision problems and achieving the desired results often requires satisfaction of different objectives. One approach to face this situation uses multi-objective fuzzy clustering of pixels in the feature space. This paper proposes a new strategy for search within the family of multi-objective differential evolution alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 14 5  شماره 

صفحات  -

تاریخ انتشار 1998